Moab City
Water Quality Report
2009

First in the Nation
First EPA Green Power Community in the Nation

We at Moab City work around the
clock to provide top quality
water to every tap. We ask that all
our customers help us protect our
water sources, which are the heart of
our community, our way of life and
our children’s future.

WHAT’S INSIDE?

This Water Quality Report is designed to inform
you about the quality of the water and services
we deliver to you every day.

Our constant goal is to provide you with a safe
and dependable supply of drinking water. We
want you to understand the efforts we make to
continually improve the water treatment
process and protect our water resources.

We are committed to ensuring the quality of
your water. Inside this annual report, you
will see the continuing efforts of Moab City to en-
sure that your drinking water is safe.

WATER SOURCES

Our water sources are ground
water which the City of
Moab acquires for drinking
water from the Mckonkie
Spring, Skakel Spring, Sum-
merville Spring, Well
#10 and Well #6. These springs and
deep wells located
in various locations
of the city provide
us with a total
amount of
611,015,000
gallons of
clean water.

QUESTIONS

If you want to learn more, please attend any of
our regularly scheduled meetings. They are held
on the second and fourth Tuesdays of each month
at 7:00 p.m. These meetings are held at the City
Hall, 217 East Center Street, Moab, Utah.

If you have any questions about this report or
concerning your water utility, please contact
Lloyd Swenson at 435-259-7485 or visit our office
at 217 East Center Street. We want our valued
customers to be informed about their water utility.

SOURCER PROTECTION

The Drinking Water Source Protection Plan for
Moab City is available for your review. It con-
tains information about source protection zones,
potential contamination sources and management
strategies to protect our drinking water. The drink-
ing water comes from three geologic formations
(Navajo Sandstone, Kayenta Formation and Win-
gate Sandstone) that constitute the Glen Canyon
Aquifer System. Because this system is typically
exposed at the surface, it is considered unprotected
from contamination. The general types of contami-
nation sources that exist within the drinking water
protection zones for Moab’s wells and springs in-
clude landfills, golf courses, unimproved and im-
proved roads, residential properties and
active and abandoned water wells.

We have developed management
strategies to protect our sources
from contamination. Please contact
us if you have questions or concerns
about our source protection plan.

SAFE WATER

As you will see by the table on the following
page, our system had no violations. We’re
proud that your drinking water meets or ex-
ceeds all Federal and State requirements.

We have learned through our monitoring
and testing that some constituents have been detected. The EPA has determined
that your water is safe at these levels.

CONTAMINANTS

All sources of drinking water are subject to po-
tential contamination by constituents that are
naturally occurring or are man made. Those con-
stituents can be microbes, organic or inorganic
chemicals, or radioactive materials. All drinking
water, including bottled water, may reasonably be
expected to contain at least small amounts of some
constituents. The presence of contaminants does
not necessarily indicate that the water poses a health
risk. More information about contaminants and po-
tential health effects can be obtained by calling the
Environmental Protection Agency’s Safe Drinking
Water Hotline at: 1-800-426-4791.
WHAT IS IN YOUR WATER?

Moab City routinely monitors for constituents in our drinking water in accordance with the Federal and Utah State laws. The following table shows the results of our monitoring for the period of January 1st to December 31st, 2009, or the most recent data.

<table>
<thead>
<tr>
<th>CONTAMINANT</th>
<th>VIOL. Y/N</th>
<th>LEVEL DETECTED</th>
<th>UNIT MEAS.</th>
<th>MCLG</th>
<th>MCL</th>
<th>SAMPLE DATE</th>
<th>LIKELY SOURCE OF CONTAMINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>MICROBIOLOGICAL CONTAMINANTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Coliform Bacteria</td>
<td>N</td>
<td>Count 0</td>
<td>*see below</td>
<td></td>
<td></td>
<td>2009</td>
<td>Naturally present in the environment</td>
</tr>
<tr>
<td>Presence of coliform bacteria in 5% of monthly samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbidity (Ground Water)</td>
<td>N</td>
<td>NTU 5</td>
<td></td>
<td></td>
<td></td>
<td>2008</td>
<td>Soil runoff</td>
</tr>
<tr>
<td>RADIOLOGICAL CONTAMINANTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alpha emitters</td>
<td>N</td>
<td>pCi/1 15</td>
<td></td>
<td></td>
<td></td>
<td>2008</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Radium 226</td>
<td>N</td>
<td>pCi/1 5</td>
<td></td>
<td></td>
<td></td>
<td>2004</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>INORGANIC CONTAMINANTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>N</td>
<td>ppb 100-100</td>
<td></td>
<td></td>
<td></td>
<td>2008</td>
<td>Discharge from steel and pulp mills; erosion of natural deposits</td>
</tr>
<tr>
<td>Copper—90% results</td>
<td>N</td>
<td>ppt 1,300,000</td>
<td>AL 1,300,000</td>
<td></td>
<td></td>
<td>2006</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits</td>
</tr>
<tr>
<td>Fluoride</td>
<td>N</td>
<td>ppb 4,000</td>
<td></td>
<td></td>
<td></td>
<td>2008</td>
<td>Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories</td>
</tr>
<tr>
<td>Lead—90% results</td>
<td>N</td>
<td>ppt 0</td>
<td>AL=15,000</td>
<td></td>
<td></td>
<td>2006</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits</td>
</tr>
<tr>
<td>Nitrates (as Nitrogen)</td>
<td>N</td>
<td>ppb 10,000</td>
<td></td>
<td></td>
<td></td>
<td>2009</td>
<td>Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits</td>
</tr>
<tr>
<td>Selenium</td>
<td>N</td>
<td>ppb 50</td>
<td></td>
<td></td>
<td></td>
<td>2008</td>
<td>Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines</td>
</tr>
<tr>
<td>Sodium</td>
<td>N</td>
<td>ppm 20</td>
<td></td>
<td></td>
<td></td>
<td>2008</td>
<td>None set by EPA</td>
</tr>
<tr>
<td>Sulfate</td>
<td>N</td>
<td>ppm 1,000</td>
<td></td>
<td></td>
<td></td>
<td>2008</td>
<td>Erosion of natural deposits; discharge from refineries and factories; runoff from landfills</td>
</tr>
<tr>
<td>Total Dissolved Solids</td>
<td>N</td>
<td>ppm 2,000</td>
<td></td>
<td></td>
<td></td>
<td>2008</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>SYNTHETIC ORGANIC CONTAMINANTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>De(2-Ethylhexyl) phthalate</td>
<td>N</td>
<td>ppt 6,000</td>
<td></td>
<td></td>
<td></td>
<td>2008</td>
<td>Discharge from factories</td>
</tr>
<tr>
<td>DISINFECTION BY-PRODUCTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Haloacetic Acids (HAAS)</td>
<td>N</td>
<td>ppb 60</td>
<td></td>
<td></td>
<td></td>
<td>2009</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Total Trihalomethanes (THM)</td>
<td>N</td>
<td>ppb 80</td>
<td></td>
<td></td>
<td></td>
<td>2009</td>
<td>By-product of drinking water chlorination</td>
</tr>
</tbody>
</table>

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

TABLE DEFINITIONS

In the table to the left, you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we’ve provided the following definitions:

Non-Detects (ND) - Laboratory analysis indicates that the contaminant is not present.

Level Detected - For water systems that have multiple sources of water, the Utah Division of Drinking Water has given water systems the option of listing the test results of the constituents in one table, instead of multiple tables. To accomplish this, the lowest and highest values detected in the multiple sources are recorded in the same space in the report table.

Part per million (ppm) or Milligrams per liter (mg/l) - 1 part per million corresponds to one minute in two years or a single penny in $10,000.

Part per billion (ppb) or Micrograms per liter (ug/l) - 1 part per billion corresponds to one minute in 2,000 years, or a single penny in $10,000,000,000.

Part per trillion (ppt) or Nanograms per liter (nanograms/l) - 1 part per trillion corresponds to one trillion in 2,000,000 years, or a single penny in $10,000,000,000,000.

None set - Laboratory analysis indicates that the contaminant is not present.

AL = Laboratory analysis indicates that the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

MCLG is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Goal is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MCL is the level that the U.S. Environmental Protection Agency has determined to protect public health.

Synthetic organic contaminants are chemicals that are not naturally present in the environment but are introduced by industries, farmers, or sewage systems.

Disinfection by-products are compounds that form when chlorine or other disinfectants are used to treat drinking water.

Microbiological contaminants are bacteria, viruses, and protozoa that can cause disease if ingested.

Inorganic contaminants are naturally occurring elements and compounds that enter the water cycle naturally.

THERE are many connections to our water distribution system. When connections are properly installed and maintained, the concerns are very minimal. However, unapproved and improper piping changes or connections can adversely affect not only the availability, but also the quality, of the water. A cross connection may let polluted water or even chemicals mingle into the water supply system when not properly protected. This not only compromises the water quality but can also affect your health. So, what can you do? Do not make or allow improper connections at your homes. Even that unprotected garden hose lying in the puddle next to the driveway is a cross connection. Install a hose bib vacuum breaker on all faucets which hook up to garden hoses. The unprotected lawn sprinkler system after you have fertilized or sprayed is also a cross connection. Learn how to make sure your sprinkler system is protected with a backflow preventer. When the cross connection is allowed to exist at your home, it will affect you and your family first. If you’d like to learn more about helping to protect the quality of our water, call us for further information about ways you can help.

LEAD LEVELS

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Moab City is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

CONTACT US

MOAB CITY
217 E. Center Street
Moab, UT 84532
Phone: 435-259-5121
Fax: 435-259-4135
Visit our website at: www.moabcity.org

First in the Nation
Designed By R.W.A.U
First EPA Green Power Community in the Nation